GLI1 regulates a novel neuropilin-2/α6β1 integrin based autocrine pathway that contributes to breast cancer initiation
نویسندگان
چکیده
The characterization of cells with tumour initiating potential is significant for advancing our understanding of cancer and improving therapy. Aggressive, triple-negative breast cancers (TNBCs) are enriched for tumour-initiating cells (TICs). We investigated that hypothesis that VEGF receptors expressed on TNBC cells mediate autocrine signalling that contributes to tumour initiation. We discovered the VEGF receptor neuropilin-2 (NRP2) is expressed preferentially on TICs, involved in the genesis of TNBCs and necessary for tumour initiation. The mechanism by which NRP2 signalling promotes tumour initiation involves stimulation of the α6β1 integrin, focal adhesion kinase-mediated activation of Ras/MEK signalling and consequent expression of the Hedgehog effector GLI1. GLI1 also induces BMI-1, a key stem cell factor, and it enhances NRP2 expression and the function of α6β1, establishing an autocrine loop. NRP2 can be targeted in vivo to retard tumour initiation. These findings reveal a novel autocrine pathway involving VEGF/NRP2, α6β1 and GLI1 that contributes to the initiation of TNBC. They also support the feasibility of NRP2-based therapy for the treatment of TNBC that targets and impedes the function of TICs.
منابع مشابه
GLI1 regulates a novel neuropilin-2/alpha6beta1 integrin based autocrine pathway that contributes to breast cancer initiation
"GLI1 regulates a novel neuropilin-2/alpha6beta1 integrin based autocrine pathway that contributes to breast cancer initiation" access article under the terms of the Creative Commons Attribution License (CC BY 3.0), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
متن کاملNeuropilin-2 regulates α6β1 integrin in the formation of focal adhesions and signaling.
The neuropilins (NRPs) contribute to the function of cancer cells in their capacity as VEGF receptors. Given that NRP2 is induced in breast cancer and correlates with aggressive disease, we examined the role of NRP2 in regulating the interaction of breast cancer cells with the ECM. Using epithelial cells from breast tumors, we defined NRP2(high) and NRP2(low) populations that differed in integr...
متن کاملRegulated splicing of the α6 integrin cytoplasmic domain determines the fate of breast cancer stem cells.
Although the α6β1 integrin has been implicated in the function of breast and other cancer stem cells (CSCs), little is known about its regulation and relationship to mechanisms involved in the genesis of CSCs. We report that a CD44(high)/CD24(low) population, enriched for CSCs, is comprised of distinct epithelial and mesenchymal populations that differ in expression of the two α6 cytoplasmic do...
متن کاملVascular endothelial growth factor is an autocrine survival factor for neuropilin-expressing breast carcinoma cells.
We identify a novel function for the vascular endothelial growth factor (VEGF) in its ability to stimulate an autocrine signaling pathway in metastatic breast carcinoma cells that is essential for their survival. Suppression of VEGF expression in metastatic cells in vitro induced their apoptosis, in addition to inhibiting the constitutively elevated phosphatidylinositol 3'-kinase activity that ...
متن کاملNeuropilin-2 regulates a6b1 integrin in the formation of focal adhesions and signaling
The neuropilins (NRPs) contribute to the function of cancer cells in their capacity as VEGF receptors. Given that NRP2 is induced in breast cancer and correlates with aggressive disease, we examined the role of NRP2 in regulating the interaction of breast cancer cells with the ECM. Using epithelial cells from breast tumors, we defined NRP2 and NRP2 populations that differed in integrin expressi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2013